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1 Introduction

The evaluation of the causal effect of some treatment, e.g. a health or labor market intervention, on

an outcome variable, e.g. individual health or labor market performance, is frequently complicated

by two identification problems: (i) endogeneity due to non-random selection into treatment and

(ii) non-response/attrition, e.g. selective non-response with respect to the follow-up survey in

which the outcome is measured. The methodological contribution of this paper is to suggest a

nonparametric approach that tackles either problem based on two distinct instruments in order

to identify average treatment effects. To the best of our knowledge, this is the first paper to

develop fully nonparametric identification results to solve the endogeneity and attrition issues via

instrumental variables.

The main identification result focuses on the case of a binary treatment and a binary

instrument for the treatment, which fits the framework of social experiments with non-compliance,

where randomization of the treatment serves as instrument and actual take-up as treatment.

However, in analogy to the discussion in Frölich (2007) (who considers the case of treatment

endogeneity without attrition), the findings can be generalized to multi-valued instruments.

Concerning endogenous outcome non-response, we assume the respective instrument to be

continuous. Financial incentives for responding to a follow-up survey, see e.g. Castiglioni,

Pforr, and Krieger (2008), and/or the number of phone calls when contacting potential survey

participants, see Behaghel, Crépon, Gurgand, and Le Barbanchon (2012), may for instance serve

as instruments, if their support is sufficiently rich and the IV assumptions appear plausible

in the empirical context. We show that our assumptions allow identifying the local average

treatment effect (LATE) among compliers as well as the average treatment effect (ATE) and

suggest nonparametric estimation approaches based on regression and weighting. We also provide

a simulation study that suggests that non- and semiparametric versions of the regression-based

estimators perform well in samples with several 1000 observations, which is quite common in

recent social experiments.

We apply our methods to a social experiment conducted at the University of St. Gallen in

Switzerland to assess the effect of students’ physical (gym) training on health. The application is

rather unique in the sense that it contains two separately randomized (and thus, highly credible)

instruments for both the treatment and non-response. Firstly, the treatment of interest, training

in the university’s gym facilities, is instrumented by a randomized cash incentive (100 CHF)
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paid out conditional on actual gym visits measured by a scanner system. Secondly, attrition is

instrumented by a cash lottery for participating in the follow-up survey in which the outcome is

measured. Cash was only paid out conditional on answering the survey. Importantly, the amount

offered for participating in the survey was randomly varied between 0 and 200 CHF, so that the

instrument is (quasi-)continuous. We observe that this cash incentive and its amount had a strong

effect on response behavior. On the other hand, for the treatment of interest, physical training,

we do not find any significant short run effects on self-assessed health.

This paper adds to the treatment evaluation literature by considering both treatment

endogeneity and outcome attrition, as a brief review of previous studies demonstrates. The

seminal papers of Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996) discuss

LATE identification under an unconditionally valid instrument for the treatment, while Abadie

(2003), Frölich (2007), and Tan (2006) propose semi- and nonparametric approaches when the IV

assumptions only hold conditional on observed characteristics. However, none of these studies

consider the problem of outcome non-response or attrition. The latter is frequently modelled by

a so-called missing at random (MAR) restriction, which imposes the conditional exogeneity (or

independence with respect to potential outcomes) of attrition given observed characteristics,

see for instance Rubin (1976), Little and Rubin (1987), Robins, Rotnitzky, and Zhao (1994),

Fitzgerald, Gottschalk, and Moffitt (1998), and Abowd, Crepon, and Kramarz (2001), among

many others. As an alternative to MAR which is suitable for the LATE framework, Frangakis

and Rubin (1999) propose their so-called latent ignorability (LI) assumption. The latter requires

that attrition is exogenous conditional on the treatment compliance behavior, which characterizes

how an individual’s treatment status reacts on its instrument, and possibly further observed

covariates. See also Mealli, Imbens, Ferro, and Biggeri (2004) for related LI assumptions and

Frölich and Huber (2014) for LATE estimation under MAR and LI in dynamic attrition models

with multiple outcome periods.

A shortcoming of LI (and MAR) is that attrition must not be related in a very general way

to unobservables affecting the outcome, whereas our approach allows for such non-ignorable

non-response, attrition, or sample selection through the availability of a distinct instrument

for non-response/attrition. The early work on non-ignorable non-response models imposed

rather strong parametric assumptions, see for instance Heckman (1976, 1979) and Hausman

and Wise (1979), which entail identification through their tight functional form restrictions.
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Instruments for attrition may, however, serve as additional source of identification and help

preventing multicollinearity problems. Instruments for attrition are imperative in nonparametric

models with non-ignorable non-response, see for instance Huber (2012, 2014), who focusses on

attrition problems in treatment evaluation with an exogenous treatment, at least conditional on

observables. Zhang, Rubin, and Mealli (2009) and Frumento, Mealli, Pacini, and Rubin (2012)

evaluate treatment effects under both endogeneity and non-ignorable non-response, but assume

that there only exists a valid instrument for the treatment. Identification therefore relies on tight

parametric assumptions, which need not be imposed here.1

In the application, we exploit a unique dataset where both treatment eligibility and response

incentives were randomized. While many studies assess the LATE in social experiments by using

treatment randomization as instrument for actual treatment take-up, instruments for non-ignorable

attrition are rarely considered. One exception is DiNardo, McCrary, and Sanbonmatsu (2006), who

apply the parametric estimator suggested by Heckman (1976, 1979) and use the effort to interview

study subjects as instrument for attrition in a randomized trial of the ‘Moving to Opportunity’

program. Furthermore, Behaghel, Crépon, Gurgand, and Le Barbanchon (2012) use phone calls

as (quasi-)instrument for non-response to derive bounds on the treatment effect in a French job

search experiment. However, neither of these studies consider the problem of treatment non-

compliance. Furthermore, both studies assume a discrete (rather than continuous) instrument

for attrition, so that point identification is only obtained under strong parametric restrictions

(see DiNardo, McCrary, and Sanbonmatsu (2006)), while more flexible (nonparametric) modelling

only allows for a partial identification of the treatment effect (see Behaghel, Crépon, Gurgand,

and Le Barbanchon (2012)). We are not aware of any other empirical study that is based on two

different randomized instruments for tackling both treatment endogeneity and outcome attrition

in a nonparametric model. Using the proposed methods will permit designing future experimental

and nonexperimental studies that retain their validity despite issues of selective non-response and

non-compliance.

The remainder of this paper is organized as follows. Section 2 introduces a nonparametric

treatment effect model with endogeneity and outcome attrition. Section 3 introduces the IV

assumptions and develops the nonparametric identification approaches, and Section 4 discusses

estimation. Section 5 presents simulation evidence on the finite sample properties of the estimation

1See also Semykina and Wooldridge (2010) and Schwiebert (2012) for further semiparametric models with endo-

geneity and selection bias.
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approach. Section 6 discusses the application to the sports experiment at the University of St.

Gallen. Section 7 concludes.

2 Model

Assume that we would like to evaluate the effect of a binary treatment D on an outcome variable

Y . The latter is, however, only partially observed conditional on response, measured by the binary

indicator R. Furthermore, we observe a vector of baseline covariates, denoted by X. Identification

will be based on two instruments Z1 and Z2 for the endogenous treatment and the non-ignorable

non-response. To this end, we postulate the following structural model consisting of a nonpara-

metric system of equations characterizing the outcome, response, and the treatment:

Y = ϕ(D,X) + U (1)

R = 1 ( ζ(D,Z2, X) ≥ V ) (2)

D = 1 ( χ(Z1, X) ≥W ) . (3)

Y is observed only when R = 1

ϕ, ζ, χ denote unknown functions so that our model is fully nonparametric. 1 (·) is the indicator

function which is equal to one if its argument is true and zero otherwise. U, V,W are unobservables

and may be arbitrarily associated, so that the treatment is in general endogenous and non-response

is non-ignorable. That is, both the treatment and non-response are related to unobservables that

affect the outcome. The elements of X are not required to be exogenous either, but may be

related to the unobservables, as long as the identifying assumptions discussed further below hold.

Z1 denotes the instrument for treatment D, henceforth referred to as first instrument. Z1 is

assumed to be binary for the ease of exposition, even though the discussion could be extended to

multi-valued instruments with bounded support, see also Frölich (2007). Z2 is the instrument for

response R, henceforth referred to as second instrument, which is assumed to be continuous. In

our model, we permit the two instruments to be possibly correlated and the compliance type to

be correlated with Z2.

Our model imposes additive separability in the outcome equation (1). This structure implicitly

invokes a conditional constant-treatment effect, i.e. that the treatment effect is identical for all

individuals with same X, see also Angrist and Fernández-Val (2010). On the other hand, it

permits for arbitrary heterogeneity acrossX since the function ϕ is completely unrestricted. Hence,
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by including more covariates in X we can enrich the amount of heterogeneity permitted. The

advantage of the additive separability in the outcome equation (1) is that we can weaken the

support requirements on the instrument Z2. The conventional approach to tackle non-response

in (nonseparable) nonparametric models is to assume that the instrument Z2 is so strong that,

for every value of V , it can make people respond, such that for every V = v (and for every X

and Z1) the response probability is positive.2 However, in many applications, including ours, the

instrument Z2 is not strong enough to believe that it makes everyone respond. This applies to all

empirical problems where non-response does not vanish completely for some value of z2. Therefore,

we want to permit that the outcome is never observed for a range of values of V , due to Z2 not

being sufficiently strong to affect the response behavior.

Our model can be easily translated into the potential outcome notation, see for instance Rubin

(1974). Let Y d, Rd denote the potential outcome and the potential response state under treatment

d ∈ {0, 1}, i.e. when exogenously setting the treatment to either state. For an individual i in the

population, these parameters are defined as follows under our model:

Rd
i = 1 ( ζ(d, Z2i, Xi) ≥ Vi ) ,

Y d
i = ϕ(d,Xi) + Ui.

Hence, we permit that the treatment D not only affects the outcomes but also the response

behavior. Estimation of the treatment effects is thus complicated through two channels: First,

V and U might be correlated with each other as well as with W . Second, through ζ(d, Z2, X)

the treatment D itself has an impact on whose outcomes are observed. Similarly, we define the

potential treatment states as a function of the first instrument, i.e. for z1 ∈ {0, 1},

Di(z1) = 1 ( χ(z1, Xi) ≥Wi ) .

As discussed in Angrist, Imbens, and Rubin (1996), the population can be categorized into four

compliance types (denoted by T ), according to the treatment behavior as a function of the first

instrument: The always takers (Ti = a) take treatment irrespective of Z1, i.e. Di(0) = Di(1) = 1.

The never takers (Ti = n) do not take the treatment irrespective of Z1, i.e. Di(0) = Di(1) = 0.

The compliers (Ti = c) take the treatment only if Z1 is one, i.e. Di(0) = 0, Di(1) = 1. Finally, the

defiers (Ti = d) take the treatment only if Z1 is zero, i.e. Di(0) = 1, Di(1) = 0.

2This has often been referred to as ‘identification at infinity’ in the parametric literature on attrition, non-response

and selection models.
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In the absence of non-response, Imbens and Angrist (1994) showed the identification of the local

average treatment effect (LATE) on the compliers, i.e. E[Y 1 − Y 0|T = c] under the assumptions

that Z1 is independent of the potential outcomes and treatment states and defiers do not exist

(i.e. weak monotonicity of D in Z1). Abadie (2003), Frölich (2007), Tan (2006) relax the IV

assumptions to only hold conditional on X. In this paper, we in addition permit for attrition and

non-response, which generally entails selection bias through associations of V with U and/or W

and therefore motivates the use of the second instrument Z2.

3 Identification

3.1 Assumptions and main identification results

This section discusses our IV assumptions and shows the identification of the LATE and the ATE.

The first assumption requires the instruments to be independent of the unobservables U, V,W

conditional on X, which may itself be endogenous (i.e. confounded by the unobservables). While

Abadie (2003), Frölich (2007), and Tan (2006) invoke a similar assumption for Z1 only, conditional

independence needs to hold for both instruments Z1 and Z2 in our model with endogeneity and

attrition. For the ease of exposition, Assumption 1 is slightly stronger than needed for the various

results to follow. We express the independence condition with respect to type T and not with

respect to the unobservable W , as we later only require independence within the types and not for

each value of W .

Assumption 1: IV independence

Z1⊥⊥T |X,Z2

(Z1, Z2)⊥⊥(U, V )|X,T

where the symbol ⊥⊥ denotes statistical independence. It is worth noting that Assumption 1 would

be implied e.g. by the following stronger assumption:

(Z1, Z2)⊥⊥(U, V,W )|X. (4)

The main difference is that Assumption 1 permits Z2 and W to be dependent, whereas (4) does

not. As W determines the type, i.e. whether someone is a complier, always taker, or never taker,

permitting dependence between Z2 and W could be relevant in applications where Z2 is not fully
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randomly assigned but possibly dependent on treatment choice. Assumption 1 also allows for an

association between Z1 and W , as long as the dependence vanishes when conditioning on Z2.

The stronger assumption (4) is not required for the identification results. If it is nevertheless

imposed, for instance because both instruments are randomized independently of each other as

in our application, it implies that the probability of being a complier does not depend on Z2.

This condition is testable because Pr(T = c|Z2, X), i.e. the proportion of compliers given Z2

and X, is identified further below. It would further imply Z2⊥⊥D|X,Z1. Hence, in applications

where both assumptions appear equally plausible, this may be used to construct partial tests

for identification. One could strengthen assumption (4) even further by assuming that the X

variables are also exogenous, i.e. independent of the unobservables. This could help to increase

the identification region particularly if the common support assumption discussed further below is

not satisfied in an application.

Assumption 1 implies that the first instrument is conditionally independent of the potential

treatment states D(1), D(0) and does not have a direct effect on response behavior or the outcome

through V or U . Z1 may for instance be the assignment indicator in a randomized experiment.

The potential treatment states are independent of Z1 under a successful randomization and the

independence of Z1 and (U, V ) is satisfied if the random assignment itself does not affect R and

Y other than through D. In observational studies, on the other hand, (but also in experiments

where randomization is within strata defined on X), Assumption 1 is often only plausible after

conditioning on covariates X.

In addition to the independence assumptions, identification requires a monotonicity condition.

Assumption 2 imposes weak monotonicity of the treatment in its instrument, which rules out the

existence of defiers, and further invokes the existence of compliers.3

Assumption 2: Weak monotonicity of treatment choice

Pr (T = c) > 0

Pr (T = d) = 0.

3Alternatively, one could also impose weakly negative monotonicity (allowing for defiers, but ruling out compli-

ers). As both cases are symmetric, we only consider weakly positive monotonicity in the remainder of the paper.

Note further that part (i) of the assumption is directly testable. In contrast, part (ii) is mostly untestable (al-

though see Huber and Mellace (2015) and Kitagawa (2015) for recent methods jointly testing monotonicity and IV

independence).
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Next, we define π(x) = Pr (Z1 = 1|X = x) and p (z2, x) = Pr (Z1 = 1|X = x, Z2 = z2) and the

corresponding random variables, i.e. for random X and Z2, as

Π = π(X) = Pr (Z1 = 1|X) ,

P = p (Z2, X) = Pr (Z1 = 1|Z2, X) .

Our third assumption states that the two probabilities P and Π need to be different from 0 and 1.

This common support restriction implies that for every value of z2 and x, observations with both

Z1 = 0 and Z1 = 1 exist.

Assumption 3: Variation of the instruments

0 < Π < 1, 0 < P < 1.

It follows from Assumptions 1 and 3 that the fraction of compliers is identified as

Pr (T = c) = E

[
D

P

Z1 − P

1− P

]
. (5)

As a further definition, let

ψd(z2, x) ≡
E [R (Z1 − p (z2, x)) |D = d,X = x, Z2 = z2]

E [Z1 − p (z2, x) |D = d,X = x, Z2 = z2]
, (6)

for d ∈ {0, 1}, and define the corresponding random variable for random Z2 and X as

Ψd = ψd(Z2, X).

Under our previous assumptions we can derive the following lemma:

Lemma 1: Under Assumptions 1 to 3 the conditional distribution functions of V

are identified as:

ψ1(z2, x) = FV |X=x,T=c (ζ(1, z2, x)) ,

ψ0(z2, x) = FV |X=x,T=c (ζ(0, z2, x)) .

Since the left hand side is identified, see definition (6), the distribution function of V at different

values of ζ is identified, too.

Our identification strategy also requires the unobservable V to be continuously distributed,

which appears rather natural in most applications and motivates Assumption 4:
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Assumption 4: The distribution function FV |X,T=c(v) is strictly increasing in v.

By combining Lemma 1 with Assumption 4 we obtain that if some values x, z′2, z
′′
2 satisfy

ψ1(z
′
2, x) = ψ0(z

′′
2 , x), then we also have that ζ(1, z′2, x) = ζ(0, z′′2 , x). This result will be

crucial for identification, which is based on the following intuition. Note that the sample

selection/non-response problem occurs because we observe outcomes only for observations with

V ≤ ζ(D,Z2, X). The sets of values V which satisfy this condition differ for D = 0 and D = 1.

At the same time, D and V are correlated. If we can find values of the instrument such that

ζ(1, z′2, x) = ζ(0, z′′2 , x) = a, then the set of observations with outcome data is given by V ≤ a in

the treated and non-treated population.

For a more formal illustration, consider the following expression for some value x and z′2:

E
[
Y RD|X = x, Z2 = z′2, Z1 = 1

]
− E

[
Y RD|X = x, Z2 = z′2, Z1 = 0

]
. (7)

Via partitioning each expression by the three types (a, c, n) one can show that (7) equals

= E
[
{ϕ(1, x) + U} · 1

{
ζ(1, z′2, x) ≥ V

}
|X = x, T = c

]
Pr
(
T = c|X = x, Z2 = z′2

)
,

where we used (U, V )⊥⊥(Z1, Z2)|X,T . Similarly, for some value x and z′′2

E
[
Y R(1−D)|X = x, Z2 = z′′2 , Z1 = 1

]
− E

[
Y R(1−D)|X = x, Z2 = z′′2 , Z1 = 0

]

= −E
[
{ϕ(0, x) + U} · 1

{
ζ(0, z′′2 , x) ≥ V

}
|X = x, T = c

]
Pr
(
T = c|X = x, Z2 = z′′2

)
.

Using the results in the appendix, the previous expressions may (after some tedious calculations)

be reformulated as follows:

E [Y R(Z1 − p(z′2, x))|D = 1, X = x, Z2 = z′2]

E [Z1 − p(z′2, x)|D = 1, X = x, Z2 = z′2]
−
E [Y R(Z1 − p(z′′2 , x))|D = 0, X = x, Z2 = z′′2 ]

E [Z1 − p(z′′2 , x)|D = 0, X = x, Z2 = z′′2 ]
(8)

= E
[
{ϕ(1, x) + U} · 1

{
ζ(1, z′2, x) ≥ V

}
− {ϕ(0, x) + U} · 1

{
ζ(0, z′′2 , x) ≥ V

}
|X = x, T = c

]

Now suppose the values z′2 and z′′2 are chosen such that ψ1(z
′
2, x) = ψ0(z

′′
2 , x). Assumption 4

implies that FV |X,T=c is invertible or, in other words, that if ψ1(z
′
2, x) = ψ0(z

′′
2 , x) it also holds

that ζ(1, z′2, x) = ζ(0, z′′2 , x) by Lemma 1. Hence,

= E
[
{ϕ(1, x) + U − ϕ(0, x)− U} · 1

{
ζ(1, z′2, x) ≥ V

}
|X = x, T = c

]

= {ϕ(1, x)− ϕ(0, x)} · E
[
1
{
ζ(1, z′2, x) ≥ V

}
|X = x, T = c

]

= {ϕ(1, x)− ϕ(0, x)} · ψ1(z
′
2, x).
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Therefore, the following expression identifies the treatment effect conditional on X:

E[Y 1 − Y 0|X = x, T = c] =

1

ψ1(z′2, x)

[
E [Y R(Z1 − p(z′2, x))|D = 1, X = x, Z2 = z′2]

E [Z1 − p(z′2, x)|D = 1, X = x, Z2 = z′2]
−
E [Y R(Z1 − p(z′′2 , x))|D = 0, X = x, Z2 = z′′2 ]

E [Z1 − p(z′′2 , x)|D = 0, X = x, Z2 = z′′2 ]

]
.

(9)

For obtaining the LATE we need to identify E[Y 1 − Y 0|X,T = c] at almost every x in the

complier population. This requires that for every x some values z′2 and z′′2 exist that satisfy

ψ1(z
′
2, x) = ψ0(z

′′
2 , x). Let Supp (Ψ1|X = x) denote the support of Ψ1 in the X = x subpopulation

and analogously for Ψ0. Furthermore, denote the common support conditional on x as

Xx ≡ Supp (Ψ1|X = x) ∩ Supp (Ψ0|X = x) . (10)

If, for some value x, the common support Xx is non-empty, there is at least one pair of values

z′2, z
′′
2 that satisfies ψ1(z

′
2, x) = ψ0(z

′′
2 , x). We impose the following common support restriction.

Assumption 5: For almost every x (in the complier population), the common support Xx is

non-empty.

Assumption 5 guarantees that LATE is identified since the conditional treatment effect is identified

almost everywhere.

For every x, it is in principle sufficient if we just pick one point of Xx and apply (9). However,

for the sake of sufficient precision in estimation, we would rather prefer to make use of all values

contained in Xx. As shown in the appendix, we can also identify (9) via conditioning on Ψd instead

of Z2. Let η ∈ Xx be some value from the common support. One can show that

E
[
Y 1 − Y 0|X = x, T = c

]
=

1

η
( Ξ1(x, η)− Ξ0(x, η) )

where

Ξd(x, η) =
E
[

Y R
E[Z1|Z2,X=x,Ψd=η]

Z1−E[Z1|Z2,X=x,Ψd=η]
1−E[Z1|Z2,X=x,Ψd=η] |D = d,X = x,Ψd = η

]

E
[

1
E[Z1|Z2,X=x,Ψd=η]

Z1−E[Z1|Z2,X=x,Ψd=η]
1−E[Z1|Z2,X=x,Ψd=η] |D = d,X = x,Ψd = η

] . (11)

Since the previous result holds for any η, we could exploit all the information available in the data

by taking an average over all values η ∈ Xx ⊆ [0, 1] for a given x. Consider any arbitrary weighting

function w(η, x) as a function of η and possibly also of x. The conditional treatment effect is given
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by

E
[
Y 1 − Y 0|X = x, T = c

]
=

1∫
0

1
η
( Ξ1(x, η)− Ξ0(x, η) )w(η, x)dη

1∫
0

w(η, x)dη

, (12)

provided that the weighting function w(η, x) does not integrate to zero. Therefore, integration

over X gives the LATE. Since the additive separability of the outcome equation (1) implies that

E
[
Y 1 − Y 0|X = x, T = c

]
= E

[
Y 1 − Y 0|X = x

]
(similarly as in Angrist and Fernández-Val

(2010)), also the ATE is obtained in an analogous way. As can be seen from our main

identification result presented in Theorem 1, the LATE and ATE only differ in terms of the

weighting of the covariates X. To ease notation, we denote the integral of the weight function for

a value of x as

c(x) =

∫
w(η, x)dη, (13)

and we suppose that c(x) is non-zero for almost every x.

Theorem 1: Under Assumptions 1 to 5 we obtain

E
[
Y 1 − Y 0|T = c

]
=

1

E
[
D
P

Z1−P
1−P

]
∫ 1∫

0

( Ξ1(X, η)− Ξ0(X, η) )
w(η,X)

η · c(X)
E

[
D

P

Z1 − P

1− P
|X

]
dηdFX

and (14)

E
[
Y 1 − Y 0

]
=

∫ 1∫

0

( Ξ1(X, η)− Ξ0(X, η) )
w(η,X)

η · c(X)
dηdFX . (15)

3.2 Identification results for independent instruments

In our application, the second instrument Z2 is randomized independently of Z1. This has two

implications, which lead to considerable simplifications of the previous formulae. First, the fraction

of compliers is independent of Z2, i.e. Pr(T = c|X,Z2) = Pr(T = c|X) = Pr(T = c|X,Ψ1), where

the last equality follows because Ψ1 = ψ1(Z2, X) is only a function of Z2 and X. Second, Z1 and

Z2 are independent such that Pr (Z1 = 1|Z2, X,Ψ1) = Pr(Z1 = 1|Z2, X) = Pr(Z1 = 1|X) and

therefore, P = Π. This also implies that D is independent of Ψd given X.4 The control function

4Proof: E [D|Ψd, X] = E [D|Ψd, X, T = c] Pr (T = c|Ψd, X)

+E [D|Ψd, X, T = a] Pr (T = a|Ψd, X) = E [Z1|Ψd, X, T = c] Pr (T = c|Ψd, X) + Pr (T = a|Ψd, X)

= E [Z1|Ψd, X, T = c] Pr (T = c|X) + Pr (T = a|X). Using the independence of Z1 and Z2 we obtain

= E [Z1|X,T = c] Pr (T = c|X) + Pr (T = a|X), which completes the proof.
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thus simplifies to

ψd(z2, x) ≡
E [R (Z1 − π(x)) |D = d,X = x, Z2 = z2]

E [Z1 − π(x)|D = d,X = x, Z2 = z2]
. (16)

We also note that E
[
D
Π

Z1−Π
1−Π |X = x,Ψd = η

]
= E

[
D
Π

Z1−Π
1−Π |X = x

]
= Pr (T = c|X = x) and that

the expressions of Theorem 1 simplify considerably, see Lemma 2. In addition, we can also express

the treatment effects based on a weighting expression, which bears some similarities to inverse

probability weighting (IPW, see the seminal work of Horvitz and Thompson (1952)), as one can

show by using iterated expectations.

Lemma 2: Under Assumptions 1 to 5 and Z2⊥⊥(Z1, T )|X the average treatment

effects are identified as

E
[
Y 1 − Y 0|T = c

]

=
1

Pr(T = c)

∫ 1∫

0

(
E

[
Y RD

Π

Z1 −Π

1−Π
|X,Ψ1 = η

]
+ E

[
Y R(1−D)

Π

Z1 −Π

1−Π
|X,Ψ0 = η

])
w(η,X)

η · c(X)
dηdFX

=
1

Pr(T = c)
E

[
Y R

Z1 −Π

Π(1−Π) · c(X)
·

{
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
+ (1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)

}]
. (17)

and

E
[
Y 1 − Y 0

]

=

∫ 1∫

0



E
[
Y RD
Π

Z1−Π
1−Π |X,Ψ1 = η

]
+ E

[
Y R(1−D)

Π
Z1−Π
1−Π |X,Ψ0 = η

]

Pr (T = c|X = x)


 w(η,X)

η · c(X)
dηdFX

= E

[
Y R

Pr(T = c|X)

Z1 −Π

Π(1−Π) · c(X)
·

{
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
+ (1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)

}]
(18)

Natural estimators follow from replacing unconditional expectations in the latter equations by

sample means and plugging in nonparametric estimators of the other components, see equations

(23), (24), (25), and (26) in Section 4. Under standard regularity conditions, the estimators

proposed further below are consistent for any non-zero weighting function w. Specifically, it is

required that π is bounded away from zero and one and f is bounded away from zero for all values

of ψd and x with a non-zero w(ψd, x). As the treatment effect is identified for any (non-zero)

weighting function, the latter should ideally be chosen such that it minimizes the variance of the

nonparametric estimation analogue. To this end, we calculate the semiparametric efficiency bound

of (17) for a given weighting function w(·). (Note that the results with also apply for the ATE.)

Since the estimate of Pr(T = c) is not affected by the weighting function, we subsequently ignore

12



this term. For ease of notation, we incorporate the scaling into the weighting function (13) and

suppose that c(x) = 1. This is immaterial for the result since, for each value of x, the weighting

function is anyhow re-scaled to one.

Furthermore, we note that the semiparametric efficiency bound also depends on the estimators

of Ψ̂1i and Ψ̂0i. On the other hand, for the sake of the practical feasibility of estimating w(·), the

resulting formulae should not be too complex to prevent the need for nonparametric estimation

of a large number of terms involved, which would further increase the variability of the estimated

weight function. For this reason, we derive the semiparametric efficiency bound of

1

n

n∑

i=1

YiRi
Z1i − π̂(Xi)

π̂(Xi) (1− π̂(Xi))
·

{
Di

w(Ψ1i, Xi)

Ψ1i · f̂ (Ψ1i|Xi)
+ (1−Di)

w(Ψ0i, Xi)

Ψ0i · f̂ (Ψ0i|Xi)

}
,

in which Ψ1i and Ψ0i are treated as covariates rather than estimated regressors. This object

converges to τ = E
[
Y 1 − Y 0|T = c

]
Pr(T = c), which we define as

τ = E

[
Y R

Z1 − π(X)

π(X) (1− π(X))
·

{
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
+ (1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)

}]
.

In the appendix, we derive the (quite complex) influence function based on Newey (2004),

which contains numerous conditional expectation terms and is therefore unlikely to be a reliable

approach for estimating an appropriate weighting function in small samples (as observed in

several explorative simulations). As our aim is to obtain a useful rule of thumb that works

well in reasonably sized samples, we subsequently only examine the first term of the influence

function, i.e. the influence function we would obtain if π and f (Ψd|X) were known. This

approach captures the direct influence of each observation on τ which does not operate via

indirect estimates of nuisance parameters.

The first term of the influence function is given by

IF ∗ = Y R ·
Z1 − π(X)

π(X) (1− π(X))
·

{
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
+ (1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)

}
− τ .

The semiparametric efficiency bound corresponds to the expected square of the influence function.

Hence, pretending π and f (Ψd|X) were not estimated, we obtain

E
[
(IF ∗)2

]
= E

[(
Y R ·

Z1 − π(X)

π(X) (1− π(X))
·

{
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
+ (1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)

}
− τ

)2
]
,

which we can re-write after a few calculations (see appendix) as

=

∫
w2(η,X)

η2

{
λ1(η,X)

fΨ1|X (η|X)
+

λ0(η,X)

fΨ0|X (η|X)

}
· dη · dFX ,

13



where

λ1(η,X) = E[Y 2RD

(
Z1

π(X)2
+

1− Z1

(1− π(X))2

)
|Ψ1 = η,X], (19)

λ0(η,X) = E[Y 2R(1−D)

(
Z1

π(X)2
+

1− Z1

(1− π(X))2

)
|Ψ0 = η,X]. (20)

This suggests the use of the following weighting function (up to an arbitrary scaling coefficient):

Weighting function 1:

w(η, x) ∝
η√

λ1(η,x)
fΨ1|X=x(η|x)

+ λ0(η,x)
fΨ0|X=x(η|x)

. (21)

As an alternative and simpler rule of thumb, we consider a function that ignores estimating the

conditional means λ1(η,X) and λ0(η,X):

Weighting function 2:

w(η, x) ∝
η√

1
fΨ1|X=x(η|x)

+ 1
fΨ0|X=x(η|x)

. (22)

The latter approach only depends on estimates of fΨ1|X and fΨ0|X , which need to be computed

anyhow in order to inspect the common support for Ψ1 and Ψ0. This weighting function also has

the advantage that its estimation does not make use of the data on the outcome Y , which implies

that the true (and unknown) treatment effect does not affect the (estimation of the) weighting

function.

4 Estimation

The identification results presented in Lemma 2 imply that the LATE may be estimated by the

following expression, in which S denotes the set of support points of η. In principle, it may depend

on x (and should then be denoted as S(x)), but since points outside of the conditional support

will anyhow receive a zero weight via the weighting function, for ease of notation we refer to S

throughout.

L̂ATE =
1

P̂r(T = c)

1

n

n∑

i=1

∑

η∈S

ŵ(η,Xi)∑
η∈S ŵ(η,Xi)

1

η

×

(
Ê[Y RD(Z1 − π̂(X))|Ψ̂1 = η,Xi] + Ê[Y R(1−D)(Z1 − π̂(X))|Ψ̂0 = η,Xi]

π̂(Xi)(1− π̂(Xi))

)
,(23)
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where

P̂r(T = c) =
1

n

n∑

i=1

Di

π̂(Xi)

Z1i − π̂(Xi)

1− π̂(Xi)
.

In the simulations and application outlined in Sections 5 and 6, the estimate π̂(Xi) of the

propensity score Pr(Z1 = 1|X) is obtained by local constant kernel regression. Ψ̂1 and Ψ̂0 are

estimated based on equation (16), by a local linear regression of Ri(Z1i− π̂(Xi) and Z1i− π̂(Xi) on

(1, Xi, Z2i), separately among treated and non-treated observations. Ê[YiRiDi(Z1i− π̂(Xi))|η,Xi]

and Ê[YiRi(1 − Di)(Z1i − π̂(Xi))|η,Xi] in (23) are obtained by a local linear regression of

YiRiDi(Z1i − π̂(Xi)) and YiRi(1−Di)(Z1i − π̂(Xi)) on (1, Ψ̂i1, Xi) and (1, Ψ̂i0, Xi), respectively.

Furthermore, f̂(Ψ̂1|X) and f̂(Ψ̂0|X), the conditional densities of Ψ̂1 and Ψ̂0 given

X, are estimated by kernel-based density estimation, and are used as plug-in estimators

for the weighting function ŵ(η,Xi), which is either based on (21) or (22). For the first

weighting approach, see (21), we also require estimates of λ1 and λ0, which we obtain by

local linear regression as Y 2
i RiDi[Z1i/π̂(Xi)

2 + (1 − Z1i)/(1 − π̂(Xi))
2] on (1, Ψ̂i1, Xi) and

Y 2
i Ri(1−Di)[Z1i/π̂(Xi)

2 + (1− Z1i)/(1− π̂(Xi))
2] on (1, Ψ̂i0, Xi) to estimate equations (19) and

(20). Finally, S denotes the set of support points of η considered in our LATE estimator (23)

which approximates the intergral over η in Lemma 2. In our simulations and applications, it

consists of an equidistant 100-points grid of values starting at the maximum of (i) the minimum

of Ψ̂i1, (ii) the minimum of Ψ̂i0, and (iii) 0.01 and ending at the minimum of (i) the maximum of

Ψ̂i1, (ii) the maximum of Ψ̂i0, and (iii) 1.5

All kernel estimates (local constant/local linear regression and conditional density estimation)

are based on the ‘np’ package of Hayfield and Racine (2008) for the statistical software R, which

provides appropriate kernel functions for both continuous and discrete regressors. To be specific, we

use the Gaussian kernel and the kernel function of Aitchison and Aitken (1976) for the continuous

and binary regressors, respectively, in the simulations and application. The bandwidths are selected

by the rule of thumb, see Silverman (1986).6

We also consider a semiparametric version of our estimator, in which local constant estimation

is replaced by probit regression (for the propensity score) and the various local linear estimators

by OLS. That is, we apply parametric first step estimators for any regression function, while the

conditional densities are again estimated by (nonparametric) kernel methods.

5Note that in finite samples, Ψ̂i1 and Ψ̂i0 may be outside the theoretical bounds of [0,1].
6Using cross-validated bandwidths did not affect the results of the application much.
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The ATE can be estimated in analogy to the LATE, as the former differs from the latter only

in terms of weighting of the covariates:

ÂTE =
1

n

n∑

i=1

∑

η∈S

ŵ(η,Xi)∑
η∈S ŵ(η,Xi)

1

η

×

(
Ê[Y RD(Z1 − π̂(X))|Ψ̂1 = η,Xi] + Ê[Y R(1−D)(Z1 − π̂(X))|Ψ̂0 = η,Xi]

Ê [DZ1|Xi]− Ê [D|Xi] π̂(Xi)

)
,(24)

with Ê [DZ1|Xi] and Ê [D|Xi] denoting estimates of E [DZ1|Xi] and E [D|Xi]. In addition to the

regression-based estimators proposed in (23) and (24), a natural estimator using a type of IPW

approach follows from equation (17):

L̂ATE =
1

P̂r(T = c)

1

n

n∑

i=1

YiRi
Z1i − π̂(Xi)

π̂(Xi) (1− π̂(Xi)) · c(Xi)

×



Di

w(Ψ̂1i, Xi)

Ψ̂1i · f̂
(
Ψ̂1i|Xi

) + (1−Di)
w(Ψ̂0i, Xi)

Ψ̂0i · f̂
(
Ψ̂0i|Xi

)



 , (25)

where c(Xi) captures the scaling of the weighting function given by (13). Analogously, a

natural estimator for the ATE is obtained from (18), where we also use Pr(T = c|X) =

E
[
D Z1−π(X)

π(X)(1−π(X)) |X
]

ÂTE =
1

n

n∑

i=1

YiRi
Z1i − π̂(Xi)

Ê [DZ1|Xi]− Ê [D|Xi] π̂(Xi)

1

c(Xi)

×



Di

w(Ψ̂1i, Xi)

Ψ̂1i · f̂
(
Ψ̂1i|Xi

) + (1−Di)
w(Ψ̂0i, Xi)

Ψ̂0i · f̂
(
Ψ̂0i|Xi

)



 , (26)

with Ê [DZ1|Xi] and Ê [D|Xi] denoting estimates of E [DZ1|Xi] and E [D|Xi]. In our simulations,

IPW performed considerably worse than regression-based estimation such that its performance is

not reported in Section 5.
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5 Simulation study

To investigate the finite sample behavior of the estimator outlined in (23), we conduct a simulation

study based on the following data generating process (DGP):

Yi = Di − 0.5Xi + Ui,

Yi is observed if Ri = 1,

Ri = I{Di + αXi + Z2i + Vi > 0},

Di = I{Z1i + αXi +Wi > 0},

Z1i = I{αXi + Pi > 0},

Z2i = αXi +Qi,

Pi, Qi ∼ N (0, 1), independently of each other and of (Xi, Ui, Vi,Wi),


Ui

Vi

Wi


 ∼ N (µ,Σ), where µ =




0

0

0


 and Σ =




1 0.5 0.5

0.5 1 0.5

0.5 0.5 1




The outcome variable Yi is determined by a linear model and only observed if the binary response

indicator Ri is equal to 1. The observed covariate Xi (whose distribution is specified below) is a

confounder of the instruments Z1i and Z2i, the binary treatment Di, the outcome, and response.

Treatment endogeneity and attrition bias arise due to the nonzero covariances of Ui, Vi,Wi (given

in Σ), which denote the unobserved terms in the outcome, response, and treatment equations.

In contrast, Pi and Qi, the unobservables in the instrument equations, are independent of each

other and the remaining unobservables Ui, Vi,Wi, as well as Xi. Therefore, both instruments are

randomly assigned given Xi.

Both (21) and (22) are considered as weighting functions in estimation based on (23). In the

tables below, we refer to these as Weighting 1 (w1) and Weighting 2 (w2), respectively. As we

use both nonparametric and parametric first step estimators for the various regression and density

functions, this all in all entails four different estimators, denoted by ‘LATE nonparametric’ and

‘LATE semiparametric’, respectively. As a comparison, we also include the (naive) LATE estimator

without attrition bias correction (‘LATE naive’ in the tables) based on weighting by the inverse

of the nonparametric estimate of Pr(Z1 = 1|X), see Frölich (2007). We consider two sample sizes

(n = 1000, 4000) and two simulation designs in which Xi is either binary or continuously uniformly

distributed.
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Table 1: Simulations with binary covariate

n=1000 n=4000

bias st.dev. RMSE bias st.dev. RMSE

LATE nonparametric w1 -0.06 1.78 1.78 -0.01 0.52 0.52

LATE nonparametric w2 0.01 0.68 0.68 0.00 0.21 0.21

LATE semiparametric w1 -0.01 0.31 0.31 -0.01 0.15 0.15

LATE semiparametric w2 0.00 0.32 0.32 -0.00 0.16 0.16

LATE naive -0.36 0.36 0.51 -0.35 0.17 0.39

Note: ‘st.dev.’ denotes the standard deviation, ‘RMSE’ the root mean squared error of the respective estimator.

‘LATE nonparametric’, ‘LATE semiparametric’, and ‘LATE naive’ refers to nonparametric estimation based on (23),

semiparametric estimation based on (23) with parametric first step estimators, and LATE estimation without bias

correction using IPW as outlined in Frölich (2007), respectively. ‘w1’ and ‘w2’ stands for weighting based on (21)

and (22), respectively.

Table 1 presents the bias, standard deviation (st.dev.), and root mean squared error (RMSE)

of the estimators for Xi ∼ binom(0.5). The complier and response rates are 36% and 51%, respec-

tively, under this covariate distribution. Nonparametric estimation with non-response correction

is nearly unbiased, but has a relatively large RMSE under the smaller sample size. This points

to numerical instabilities of the estimator in moderate samples due to nonparametric first step

estimation. Generally we find that the simpler weighting function (22), where fewer components

need to be estimated, performs better. Precision and RMSE improve under the larger sample size

and when using weighting function (22), the nonparametric estimator now outperforms the naive

LATE, which is severely biased due to omitting non-response. However, semiparametric estima-

tion (with non-response correction) performs considerably better w.r.t. precision and RMSE than

the nonparametric method under either sample size. It even dominates naive LATE under n =

1000, depends little on the chosen weighting function, and appears to be the preferred choice in

smaller samples.

Finally, Table 2 reports the results when the covariate follows a uniform distribution between

-0.5 and 0.5 (Xi ∼ U [−0.5, 0.5]). The complier and response rates are 34% and 66%, respectively.

Again, fully nonparametric estimation is relatively imprecise for n = 1000 (albeit less so than in the

case of the binary covariate) and entails the largest RMSE. It improves as the sample size increases,

but is in our DGP always outperformed by semiparametric estimation. The latter method entails
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Table 2: Simulations with continuous covariate

n=1000 n=4000

bias st.dev. RMSE bias st.dev. RMSE

LATE nonparametric w1 -0.00 0.76 0.76 -0.03 0.23 0.23

LATE nonparametric w2 -0.06 0.54 0.55 -0.03 0.22 0.22

LATE semiparametric w1 0.02 0.32 0.32 0.00 0.16 0.16

LATE semiparametric w2 0.04 0.35 0.35 0.02 0.17 0.17

LATE naive -0.33 0.32 0.46 -0.32 0.16 0.36

Note: ‘st.dev.’ denotes the standard deviation, ‘RMSE’ the root mean squared error of the respective estimator.

‘LATE nonparametric’, ‘LATE semiparametric’, and ‘LATE naive’ refers to nonparametric estimation based on (23),

semiparametric estimation based on (23) with parametric first step estimators, and LATE estimation without bias

correction using IPW as outlined in Frölich (2007), respectively. ‘w1’ and ‘w2’ stands for weighting based on (21)

and (22), respectively.

RMSEs that are similar to those in Table 1 and is again stable across weighting schemes. Naive

LATE estimation is once more severely biased and increasingly dominated (in terms of having a

small RMSE) by the methods suggested in this paper as the sample size grows. For the sample

sizes examined here semiparametric estimation works best.

6 Application: The effects of sports on self-reported health

6.1 The experiment

The estimator outlined in (23) is applied in a field experiment to analyze the short-term effect of

recreational sport and exercise in university on self-assessed health. Campus sports and exercise

are an integral part of university life. Universities usually offer these programs and facilities to

promote a healthy and balanced lifestyle of their students. While in general health benefits of

sports and physical exercise are well established,7 little is known about the health effects of recre-

ational campus sports and exercise. A fundamental problem of this literature is the self-selection

into sports. Students who practice sports potentially differ in observable and unobservable char-

7See Timmons, Leblanc, Carson, Connor Gorber, Dillman, Janssen, Kho, Spence, Stearns, and Tremblay (2012)

for small children, Janssen and Leblanc (2010) for adolescents, and Reiner, Niermann, Jekauc, and Woll (2013) for

adults.
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acteristics from those students that do not.8 To solve this endogeneity problem, Fricke, Lechner,

and Steinmayr (2015) carried out an experiment at the University of St.Gallen,9 in which they

randomly assigned incentives to exercise among students. Specifically, they provided first year stu-

dents in the cohort 2013 who participated in a baseline survey (sample size n = 472) randomly

with cash incentives to participate in campus sports and exercise.10 Half of the students received

a cash incentive of 100 CHF, while the other half did not. (At the time of the experiment, this

amount was approximately worth USD 110.)11

Using this experiment, we randomly invited students to enter a lottery in order to incentivize

participation in a follow-up survey which measures self-reported health.12 Students could win a

cash price with a chance of 25% conditional on survey participation. The cash prices varied in

steps of CHF 10 from 10 to CHF 200 and each of them was offered to approximately 20 students.

The survey was sent to the students at the end of the second semester. Additionally, students

received up to four reminders to participate in the survey. We sent an email offering a lottery

conditional on survey participation to some students after the first survey email and after the

fourth reminder.13 Note that the lottery was randomized among students who were still enrolled

at the university.

The research design makes use of three different data sources. First, the treatment is based on

data from the university ID scanner at the entrance of the university gym. This gym covers most

of the university’s sports and exercise activities.14 Second, the administrative student records of

the university provide us with socio-demographic information such as gender, age, nationality, and

mother tongue. Third, the outcome, self-reported health which ranges from (1) very good to (5)

8See for example Schneider and Becker (2005), and Farrell and Shields (2002).
9The University of St.Gallen is one of 12 public universities in Switzerland. Its covers the fields of Business

Administration, Economics, International Affairs, and Law. In 2013, it accommodates approximately 7700 students.
10Charness and Gneezy (2009) document the the effectiveness of cash incentives to increase physical activity.
11The exact implementation was as follows: The students were split into 13 blocks conditional on individual

characteristics. In all blocks, approximately half of the students were assigned to the treatment group and to the

control group. If students use the campus sports and exercise facilities twice per week over ten weeks, they receive

the entire amount. Each week the endowment is reduced by CHF 5 if they participate only once a week, or by CHF

10 if they do not participate at all.
12Again, we randomized within three blocks conditional on individual characteristics.
13The lottery email was sent directly after the survey email in order avoid an additional reminder effect of the

lottery.
14Activities include besides the regular gym, a multitude of courses, as well as team sports.
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poor, is taken from the follow-up survey at the end of the second semester.15

6.2 Descriptive statistics

Table 3 shows descriptive statistics in the total sample as well as conditional on (not) receiving

a cash incentive and lottery offer. The sample consists of mostly Swiss (81%), German speaking

(90%) students. Thirty-seven percent of the students are female and the average age at enrollment

is approximately 20 years. Moreover, Table 3 allows assessing the quality of the randomization of

both instruments. Column (4) provides the mean differences of student characteristics, the health

outcome, the treatment ‘one or more gym visits’, and follow-up response across the groups with

and without cash incentive. The respective p-values suggest that the student characteristics are

well balanced. Column (7) gives the mean differences of the previous variables as well as the cash

incentive instrument across students receiving no lottery offer and some offer larger than zero.

Column (8) provides an F-test for joint significance of the amount of the cash lottery and its

square in an OLS or probit regression of the respective non-binary or binary variable. The results

suggest that both the student characteristics and the cash incentives are comparable across cash

lottery recipients and non-recipients.

We now consider the effectiveness of either instrument. The probability of students who receive

the cash incentives to visit the gym at least once is 82.2%, which 7.9 percentage points higher than

among students not receiving the incentives (74.3%). The difference is significant at the 5% level

(using heteroskedasticity robust standard errors). As for the cash lottery for response, the offer

of a positive value increases the follow-up survey response rate by 23 percentage points, i.e. from

48% to 72%. Furthermore, Figure 1 suggests that the response rate increases nonlinearly with the

value of the lottery, with the strongest marginal effects between CHF 80 and 140. The response

rates reach around 80% for high lottery values of CHF 140 to 200.

6.3 Results

The (binary) treatment is defined as visiting the university gym at least once during the first

study year. In our estimations, we condition on the (binary) covariates gender (‘female’) and Swiss

nationality (‘Swiss’). The first stage effect is 0.084, implying that the cash incentive instrument

15For only two out of all respondents of the follow-up survey, self-reported health is missing (item non-response).

The two missing values were set to the mean of self-assessed health among the 470 survey respondents without item

non-response. Alternatively, deleting these two observations led to qualitatively similar conclusions.
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Table 3: Descriptive Statistics

Cash Incentive to visit gym Lottery incentive for response

Overall Control Cash incentives Difference Lottery = 0 Lottery > 0 Difference F-Statistic

(p-value) (p-value) (p-value)

(1) (2) (3) (4) (5) (6) (7) (8)

Swiss 0.81 0.81 0.81 -0.01 0.80 0.81 0.01 0.32

(0.84) (0.88) (0.73)

German mother tongue 0.90 0.92 0.89 -0.03 0.92 0.90 -0.02 0.28

(0.29) (0.58) (0.75)

Female 0.37 0.37 0.37 0.00 0.39 0.36 -0.03 0.66

(0.97) (0.6) (0.52)

Age 19.87 19.88 19.85 -0.03 19.86 19.87 0.01 0.20

(0.81) (0.93) (0.82)

Self-reported health 1.92 1.90 1.95 0.05 1.93 1.92 -0.00 0.12

(0.38) (0.95) (0.89)

Response incentives - - - - 0.46 0.53 0.06 0.17

- (0.28) (0.84)

One or more gym visits 0.78 0.74 0.82 0.08 0.72 0.80 0.08 0.34

(0.04) (0.12) (0.71)

Follow-up response 0.67 0.66 0.68 0.02 0.48 0.72 0.23 13.95

(0.70) (0.00) (0.00)

N 230 242 97 375

Note: Column (1) shows the overall sample mean. Columns (2), (3), (5), and (6) give the respective group means.

The F-statistic corresponds to an F-test for joint significance of the amount of the cash lottery and its square in

an OLS or probit regression of the respective non-binary or binary attribute. ‘Swiss’ is a binary indicator for Swiss

nationality. ‘German mother tongue’ is a binary indicator for native language of the student. ‘Age’ refers to the

age at enrollment. ‘Self-reported health’ ranges from 1: very good to 5: poor. The corresponding statistics are only

reported for students who answer the follow up survey. ‘Cash incentives to visit gym’ is a binary indicator for the

receipt of the incentives to exercise. ‘One or more gym visits’ is a binary indicator for visiting the gym at least once

over the two semesters. ‘Follow-up response’ is a binary indicator for participation in the follow-up survey.

increases the probability to visit the gym at least once by 8.4 percentage points (which corresponds

to the complier share),16 with a bootstrap p-value of 0.056. Table 4 reports the LATE estimates

based on (23) using the semiparametric approach, which performed much better in the previous

16This number differs slightly from that in Table 3 since we control for covariates X.
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Figure 1: Follow up Survey Response
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Table 4: Application

effects estimate p-value differences in effects estimate p-value

LATE semiparametric w1 0.91 0.87 semiparametric w1 − naive 0.08 0.93

LATE semiparametric w2 1.00 0.91 semiparametric w2 − naive 0.18 0.84

LATE naive (no attrition correction) 0.83 0.47

Note: P-values are based on the quantiles of the bootstrapped effects using 1999 bootstrap replications. ‘LATE

semiparametric’ and ‘LATE naive’ refers to semiparametric estimation based on (23) with parametric first step

estimators and LATE estimation without bias correction using IPW as outlined in Frölich (2007), respectively. ‘w1’

and ‘w2’, stands for weighting based on (21) and (22), respectively. The outcome ‘self-reported health’ ranges from

1: very good to 5: poor.

Monte Carlo simulation than fully nonparametric estimation (which appeared to be very noisy

in small samples). The table reports ‘LATE semiparametric’, both with weighting functions (21)

and (22), see ‘w1’ and ‘w2’. Also included is the nonparametric LATE estimator without attrition

correction based on IPW (‘LATE naive’) as outlined in Frölich (2007), as well as the differences

between the latter and the former approaches (‘semiparametric w1 − naive ...’). This estimator is

inconsistent unless attrition was a non-selective random event, i.e. only depending on observables.

Besides the LATEs, the table gives the bootstrap p-values based on the quantiles of the resampled

distribution of the effect estimates (1999 replications), see eq. (6) in MacKinnon (2006). We

provide the quantile-based p-values (rather than those based on the t-statistic) to account for the

problem that in finite samples the moments of instrumental variable estimators may not exist such

that t-statistics may be misleading.
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The naive LATE estimator is positive (0.83 points), implying a decrease in self-assessed health

if taken at face value, but at the same time far from being significant at any conventional level.

With point estimates 0.91 and 1.00, the attrition-corrected estimates are similar and insignificant,

too. So are the differences between the bias corrected and naive LATE estimators. We conclude

that in our application, we find neither evidence for an effect of gym training on (short term)

self-assessed health nor for selective attrition (with respect to the unobserved potential outcomes).

We acknowledge that this may be due to the low precision of our estimates rooted in the small

sample size and complier share.

7 Conclusion

This paper developed a nonparametric identification approach of average treatment effects in the

presence of both treatment endogeneity and attrition/non-response, using a discrete instrument

for the binary treatment and a continuous instrument for attrition. Furthermore, we proposed

nonparametric and semiparametric estimators based on the sample analogs of our identification

results and investigated their performance in a small simulation study. As an empirical illustration,

we considered a randomized experiment at a Swiss University in order to estimate the effect of

gym training on students’ self-assessed health, where the treatment (gym training) and attrition

were instrumented by randomized cash incentives (paid out conditional on gym visits) and by a

cash lottery for participating in the follow-up survey, respectively. We did not find evidence for

selective attrition. In future research we will also examine settings for non-binary treatments, which

presumably will require more demanding identification approaches in requiring several continuous

instrumental variables (which may be harder to find in applied research).
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Frölich, M. (2007): “Nonparametric IV Estimation of Local Average Treatment Effects with

Covariates,” Journal of Econometrics, 139, 35–75.
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A Appendix: Proofs of Theorems

A.1 Preliminaries

We will repeatedly make use of

E

[
D

p(Z2, X)

Z1 − p(Z2, X)

1− p(Z2, X)
|X,Z2

]
(A.1)

= E [D|X,Z2, Z1 = 1]− E [D|X,Z2, Z1 = 0]

= Pr (T = c|X,Z2) .

The proof is immediate via partitioning by types, as

E [D|X,Z2, Z1 = 1]

= E [D|X,Z2, Z1 = 1, T = a] Pr (T = a|X,Z2, Z1 = 1)

+E [D|X,Z2, Z1 = 1, T = c] Pr (T = c|X,Z2, Z1 = 1)

+E [D|X,Z2, Z1 = 1, T = n] Pr (T = n|X,Z2, Z1 = 1)

= Pr (T = a|X,Z2, Z1 = 1) + Pr (T = c|X,Z2, Z1 = 1)

= Pr (T = a|X,Z2) + Pr (T = c|X,Z2) ,

because of T⊥⊥Z1|X,Z2. With analogous derivations for E [D|X,Z2, Z1 = 0], the result follows

immediately.
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A.2 Proof of Lemma 1

We show the result for ψ1(z2, x) and note that the derivations for ψ0(z2, x) are analogous. Note

that

E [RD|X = x, Z2 = z2, Z1 = 1]

= E [RD|X = x, Z2 = z2, Z1 = 1, T = c] Pr (T = c|X = x, Z2 = z2, Z1 = 1)

+E [RD|X = x, Z2 = z2, Z1 = 1, T = a] Pr (T = a|X = x, Z2 = z2, Z1 = 1)

+E [RD|X = x, Z2 = z2, Z1 = 1, T = n] Pr (T = n|X = x, Z2 = z2, Z1 = 1) .

= Pr (ζ(1, z2, x) ≥ V |X = x, Z2 = z2, Z1 = 1, T = c) Pr (T = c|X = x, Z2 = z2)

+Pr (ζ(1, z2, x) ≥ V |X = x, Z2 = z2, Z1 = 1, T = a) Pr (T = a|X = x, Z2 = z2)

= FV |X=x,Z2=z2,Z1=1,T=c (ζ(1, z2, x)) Pr (T = c|X = x, Z2 = z2)

+FV |X=x,Z2=z2,Z1=1,T=a (ζ(1, z2, x)) Pr (T = a|X = x, Z2 = z2)

= FV |X=x,T=c (ζ(1, z2, x)) · Pr (T = c|X = x, Z2 = z2)

+FV |X=x,T=a (ζ(1, z2, x)) · Pr (T = a|X = x, Z2 = z2) ,

where the second equality follows from inserting the definition of the types and using T⊥⊥Z1|X,Z2

and the fourth equality follows from V⊥⊥(Z1, Z2)|X,T
With this intermediary result and with analogous derivations for E [RD|X,Z2, Z1 = 0] we ob-

tain

E [RD|X = x, Z2 = z2, Z1 = 1]− E [RD|X = x, Z2 = z2, Z1 = 0]

= FV |X=x,T=c (ζ(1, z2, x)) · Pr (T = c|X = x, Z2 = z2)

= E

[
RD

E [Z1|X = x, Z2 = z2]

Z1 − E [Z1|X = x, Z2 = z2]

1− E [Z1|X = x, Z2 = z2]
|X = x, Z2 = z2

]
.

Now inserting the result of (A.1) for Pr (T = c|X = x, Z2 = z2) we obtain

E
[

RD
p(z2,x)

Z1−p(z2,x)
1−p(z2,x)

|X = x, Z2 = z2

]

E
[

D
p(z2,x)

Z1−p(z2,x)
1−p(z2,x)

|X = x, Z2 = z2

] = FV |X=x,T=c (ζ(1, z2, x)) ,

which simplifies to

=
E [RD · (Z1 − p (z2, x)) |X = x, Z2 = z2]

E [D · (Z1 − p (z2, x)) |X = x, Z2 = z2]

=
E [R · (Z1 − p (z2, x)) |D = 1, X = x, Z2 = z2]

E [Z1 − p (z2, x) |D = 1, X = x, Z2 = z2]
.

A.3 Proof of Theorem 1

Consider some value x and suppose that Xx is non-empty. Let η̄ ∈ Xx be a value from the common

support. Now consider the expression

E

[
Y RD

Pr (Z1 = 1|X = x,Ψ1 = η̄)

Pr (Z1 = 1|Z2, X = x,Ψ1 = η̄)
|X = x,Ψ1 = η̄, Z1 = 1

]
(A.2)
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=

∫
E

[
Y RD

Pr (Z1 = 1|X = x,Ψ1 = η̄)

Pr (Z1 = 1|Z2, X = x,Ψ1 = η̄)
|Z2, X = x,Ψ1 = η̄, Z1 = 1

]
dFZ2|X=x,Ψ1=η̄,Z1=1

=

∫
E [Y RD|Z2, X = x,Ψ1 = η̄, Z1 = 1] dFZ2|X=x,Ψ1=η̄

=

∫
E [Y RD|Z2, X = x, Z1 = 1] dFZ2|X=x,Ψ1=η̄,

which follows from Bayes theorem and because Ψ1 = ψ1(Z2, X) is a function of Z2 and X only.

Now partitioning by type, inserting the model, and using T⊥⊥Z1|X,Z2 and (U, V )⊥⊥(Z1, Z2)|X,T

implies:
∫
E [Y RD|Z2, X = x, Z1 = 1] dFZ2|X=x,Ψ1=η̄

=

∫
E [{ϕ(1, x) + U} · 1 ( ζ(1, z2, x) ≥ V ) |Z2 = z2, X = x, Z1 = 1, T = a] Pr (T = a|Z2 = z2, X = x) dFZ2|X=x,Ψ1=η̄

+

∫
E [{ϕ(1, x) + U} · 1 ( ζ(1, z2, x) ≥ V ) |Z2 = z2, X = x, Z1 = 1, T = c] Pr (T = c|Z2 = z2, X = x) dFZ2|X=x,Ψ1=η̄

=

∫
E [{ϕ(1, x) + U} · 1 ( ζ(1, z2, x) ≥ V ) |X = x, T = a] Pr (T = a|Z2 = z2, X = x) dFZ2|X=x,Ψ1=η̄

+

∫
E [{ϕ(1, x) + U} · 1 ( ζ(1, z2, x) ≥ V ) |X = x, T = c] Pr (T = c|Z2 = z2, X = x) dFZ2|X=x,Ψ1=η̄.

Analogously, we can derive a similar expression as (A.2) for the Z1 = 0 subpopulation. Combining the two

results we obtain:

E

[
Y RD

Pr (Z1 = 1|X = x,Ψ1 = η̄)

Pr (Z1 = 1|Z2, X = x,Ψ1 = η̄)
|X = x,Ψ1 = η̄, Z1 = 1

]

− E

[
Y RD

Pr (Z1 = 0|X = x,Ψ1 = η̄)

Pr (Z1 = 0|Z2, X = x,Ψ1 = η̄)
|X = x,Ψ1 = η̄, Z1 = 0

]
(A.3)

=

∫
E [{ϕ(1, x) + U} · 1 ( ζ(1, z2, x) ≥ V ) |X = x, T = c] Pr (T = c|Z2 = z2, X = x) dFZ2|X=x,Ψ1=η̄

=

∫
E
[
{ϕ(1, x) + U} · 1

(
V ≤ F−1

V |X=x,T=c
(η̄)
)
|X = x, T = c

]
Pr (T = c|Z2 = z2, X = x) dFZ2|X=x,Ψ1=η̄

which follows from Lemma 1, with F−1
V |X=x,T=c

being the inverse function of FV |X=x,T=c. Again using that

Ψ1 = ψ1(Z2, X) is a function of Z2 and X only we can also see that the last terms in the previous expression

simplify to Pr (T = c|X = x,Ψ1 = η̄), such that we obtain

E
[
{ϕ(1, x) + U} · 1

(
V ≤ F−1

V |X=x,T=c
(η̄)
)
|X = x, T = c

]
Pr (T = c|X = x,Ψ1 = η̄)

=

{
ϕ(1, x) · η̄ +

∫
E
[
U · 1

(
V ≤ F−1

V |X=x,T=c
(η̄)
)
|X = x, T = c

]}
Pr (T = c|X = x,Ψ1 = η̄) .(A.4)

Note that we can also re-write expression (A.3) as

= E

[
Y RD

Z1

Pr (Z1 = 1|Z2, X = x,Ψ1 = η̄)
|X = x,Ψ1 = η̄

]

− E

[
Y RD

1− Z1

Pr (Z1 = 0|Z2, X = x,Ψ1 = η̄)
|X = x,Ψ1 = η̄

]
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= E

[
Y RD

E [Z1|Z2, X = x,Ψ1 = η̄]

Z1 − E [Z1|Z2, X = x,Ψ1 = η̄]

1− E [Z1|Z2, X = x,Ψ1 = η̄]
|X = x,Ψ1 = η̄

]
. (A.5)

By analogous derivations,

E

[
D

E [Z1|Z2, X = x,Ψ1 = η̄]

Z1 − E [Z1|Z2, X = x,Ψ1 = η̄]

1− E [Z1|Z2, X = x,Ψ1 = η̄]
|X = x,Ψ1 = η̄

]
= Pr (T = c|X = x,Ψ1 = η̄) .

(A.6)

Analogously, we can derive

E

[
Y R(1−D)

E [Z1|Z2, X,Ψ0 = η̄]

Z1 − E [Z1|Z2, X,Ψ0 = η̄]

1− E [Z1|Z2, X,Ψ0 = η̄]
|X = x,Ψ0 = η̄

]
(A.7)

= E

[
Y R(1−D)

Pr (Z1 = 1|X = x,Ψ0 = η̄)

Pr (Z1 = 1|Z2, X = x,Ψ0 = η̄)
|X = x,Ψ0 = η̄, Z1 = 1

]

− E

[
Y R(1−D)

Pr (Z1 = 0|X = x,Ψ0 = η̄)

Pr (Z1 = 0|Z2, X = x,Ψ0 = η̄)
|X = x,Ψ0 = η̄, Z1 = 0

]

= −

{
ϕ(0, x) · η̄ +

∫
E
[
U · 1

(
V ≤ F−1

V |X=x,T=c
(η̄)
)
|X = x, T = c

]}
Pr (T = c|X = x,Ψ0 = η̄) . (A.8)

Similarly, we can derive

E

[
1−D

E [Z1|Z2, X,Ψ0 = η̄]

Z1 − E [Z1|Z2, X,Ψ0 = η̄]

1− E [Z1|Z2, X,Ψ0 = η̄]
|X = x,Ψ0 = η̄

]
= −Pr (T = c|X = x,Ψ0 = η̄) . (A.9)

Now putting all results together, we obtain

1

η̄

E
[

Y RD
E[Z1|Z2,X=x,Ψ1=η̄]

Z1−E[Z1|Z2,X=x,Ψ1=η̄]
1−E[Z1|Z2,X=x,Ψ1=η̄] |X = x,Ψ1 = η̄

]

E
[

D
E[Z1|Z2,X=x,Ψ1=η̄]

Z1−E[Z1|Z2,X=x,Ψ1=η̄]
1−E[Z1|Z2,X=x,Ψ1=η̄] |X = x,Ψ1 = η̄

]

−
1

η̄

E
[

Y R(1−D)
E[Z1|Z2,X=x,Ψ0=η̄]

Z1−E[Z1|Z2,X=x,Ψ0=η̄]
1−E[Z1|Z2,X=x,Ψ0=η̄] |X = x,Ψ0 = η̄

]

E
[

1−D
E[Z1|Z2,X=x,Ψ0=η̄]

Z1−E[Z1|Z2,X=x,Ψ0=η̄]
1−E[Z1|Z2,X=x,Ψ0=η̄] |X = x,Ψ0 = η̄

]

=
1

η̄

{
ϕ(1, x) · η̄ +

∫
E
[
U · 1

(
V ≤ F−1

V |X=x,T=c
(η̄)
)
|X = x, T = c

]}

−
1

η̄

{
ϕ(0, x) · η̄ +

∫
E
[
U · 1

(
V ≤ F−1

V |X=x,T=c
(η̄)
)
|X = x, T = c

]}

= ϕ(1, x)− ϕ(0, x) = E
[
Y 1 − Y 0|X = x, T = c

]
= E

[
Y 1 − Y 0|X = x

]
.

Define

Ξd(x, η) =
E
[

Y R
E[Z1|Z2,X=x,Ψd=η]

Z1−E[Z1|Z2,X=x,Ψd=η]
1−E[Z1|Z2,X=x,Ψd=η] |D = d,X = x,Ψd = η

]

E
[

1
E[Z1|Z2,X=x,Ψd=η]

Z1−E[Z1|Z2,X=x,Ψd=η]
1−E[Z1|Z2,X=x,Ψd=η] |D = d,X = x,Ψd = η

] .
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Now we obtain

1

η
( Ξ1(x, η)− Ξ0(x, η) ) = E

[
Y 1 − Y 0|X = x

]
= E

[
Y 1 − Y 0|X = x, T = c

]

.

In principle, a single value η ∈ Xx suffices for identification of the treatment effect conditional on X.

For estimation, this would, however, imply that only a rather limited amount of the information in the data

was used. Instead, we might consider all values η ∈ Xx ⊆ [0, 1] and choose some weighting scheme w(η, x)

as a function of η and possibly also of x. One may therefore identify the conditional treatment effect as

=

1∫
0

1
η
( Ξ1(x, η)− Ξ0(x, η) )w(η, x)dη

1∫
0

w(η, x)dη

,

provided that the weighting function w(η, x) does not integrate to zero. With this result we obtain the

average treatment effect as

E
[
Y 1 − Y 0

]
=

∫ 


1∫

0

1

η
(Ξ1(X, η)− Ξ0(X, η) )

w(η,X)∫
w(η,X)dη


 dηdFX

and the local average treatment effect on the compliers as

E
[
Y 1 − Y 0|T = c

]
=

∫
E
[
Y 1 − Y 0|X,T = c

]
dFX|T=c

=

∫
E
[
Y 1 − Y 0|X,T = c

] Pr (T = c|X) dFX

Pr (T = c)

=
1

E
[
D
P

Z1−P
1−P

]
∫
E
[
Y 1 − Y 0|X,T = c

]
E

[
D

P

Z1 − P

1− P
|X

]
dFX

,where we made use of (5) and a similar result for the fraction of compliers conditional on X. Now combining

all results we obtain

E
[
Y 1 − Y 0|T = c

]

=
1

E
[
D
P

Z1−P
1−P

]
∫ 


1∫

0

1

η
( Ξ1(X, η)− Ξ0(X, η) )

w(η,X)∫
w(η,X)dη


E

[
D

P

Z1 − P

1− P
|X

]
dηdFX .
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A.4 Influence function

Using the approach of Newey (2004), we obtain the influence function

IF = Y R ·
Z1 − π(X)

π(X) (1− π(X))
·

{
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
+ (1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)

}
− τ

+ E

[
Y R

{
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
+ (1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)

}
· (−1)

{
Z1 − π(X)

π(X) (1− π(X))

}2

|X

]
· (Z1 − π(X))

+ E

[
Y R

Z1 − π(X)

π(X) (1− π(X))
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
|X

]
− E

[
Y R

Z1 − π(X)

π(X) (1− π(X))
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
|Ψ1, X

]

+ E

[
Y R

Z1 − π(X)

π(X) (1− π(X))
(1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)
|X

]
− E

[
Y R

Z1 − π(X)

π(X) (1− π(X))
(1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)
|Ψ0, X

]
,

where the second line represents the correction term for the nonparametric estimation of π(X) =

Pr(Z1 = 1|X), the third line that for the estimation of f (Ψ1|X), and the fourth line that for the estimation

of f (Ψ0|X).

Calculating the expected square of this influence function led to a very lengthy expression containing

many terms that include the weighting function w in non-linear ways. Minimizing this variance with re-

spect to the choice of w in the class of non-zero functions integrating to one is non-trivial. Yet, even if one

had obtained the optimal weighting function that minimizes the efficiency bound, it would contain many

unknown conditional expectations involving Y , R, D, Z1 and Ψd. Although all these conditional expec-

tations can be estimated consistently nonparametrically, such estimates would be noisy in small samples

and thus could lead to a noisy estimate of the weighting function, which could imply that some weights

become arbitrarily large. Hence, the analytically optimal weighting function might behave poorly in finite

samples and to guard against such poor behavior we would have to introduce a further trimming function

on the estimated weighting function. We therefore seek a simpler (but yet intuitive) rule-of-thumb, which

we develop in the following by only examining the first term of the influence function. In addition, the

second rule-of-thumb we develop has the advantage that it does not involve the outcome data. This is a

valuable property as it implies that the true (and unknown) treatment effects do not enter the calculation

of the weighting function.17

Calculations with first term only

The first term of the influence function is

IF ∗ = Y R ·
Z1 − π(X)

π(X) (1− π(X))
·

{
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
+ (1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)

}
− τ .

The semiparametric efficiency bound is given by the expected square of the influence function. Hence,

pretending π and f (Ψd|X) were not estimated, we obtain

E
[
(IF ∗)

2
]
= E

[(
Y R ·

Z1 − π(X)

π(X) (1− π(X))
·

{
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
+ (1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)

}
− τ

)2
]
,

17This is somewhat akin to the approach in propensity score matching, where one can re-specify the propensity

score for better balance, while being ensured that this specification process of the propensity score is not driven by

the true treatment effects, thereby avoiding any (un)conscious data mining with respect to the outcome variable.
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which we can re-write as

E
[
(IF ∗)

2
]
− τ2 = E

[(
Y R ·

Z1 − π(X)

π(X) (1− π(X))
·

{
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
+ (1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)

})2
]

= E

[
Y 2R2 ·

(
Z1 − π(X)

π(X) (1− π(X))

)2

·

{
D

w(Ψ1, X)

Ψ1 · f (Ψ1|X)
+ (1−D)

w(Ψ0, X)

Ψ0 · f (Ψ0|X)

}2
]

= E

[
Y 2R ·

(
Z1

π(X)2
+

1− Z1

(1− π(X))
2

)
·

{
D

w2(Ψ1, X)

Ψ2
1 · f

2 (Ψ1|X)
+ (1−D)

w2(Ψ0, X)

Ψ2
0 · f

2 (Ψ0|X)

}]

= E

[
Y 2R ·

(
Z1

π(X)2
+

1− Z1

(1− π(X))
2

)
·D

w2(Ψ1, X)

Ψ2
1 · f

2 (Ψ1|X)

]

+E

[
Y 2R ·

(
Z1

π(X)2
+

1− Z1

(1− π(X))
2

)
· (1−D)

w2(Ψ0, X)

Ψ2
0 · f

2 (Ψ0|X)

]

=

∫
E

[
Y 2RD

(
Z1

π(X)2
+

1− Z1

(1− π(X))
2

)
w2(Ψ1, X)

Ψ2
1 · f

2 (Ψ1|X)
|Ψ1, X

]
fΨ1|X · dΨ1 · dFX

+

∫
E

[
Y 2R(1−D)

(
Z1

π(X)2
+

1− Z1

(1− π(X))
2

)
w2(Ψ0, X)

Ψ2
0 · f

2 (Ψ0|X)
|Ψ0, X

]
fΨ0|X · dΨ0 · dFX

=

∫
E

[
Y 2RD

(
Z1

π(X)2
+

1− Z1

(1− π(X))
2

)
|Ψ1, X

]
w2(Ψ1, X)

Ψ2
1 · f (Ψ1|X)

· dΨ1 · dFX

+

∫
E

[
Y 2R(1−D)

(
Z1

π(X)2
+

1− Z1

(1− π(X))
2

)
|Ψ0, X

]
w2(Ψ0, X)

Ψ2
0 · f (Ψ0|X)

· dΨ0 · dFX

=

∫
w2(η,X)

η2

{
λ1(η,X)

fΨ1|X (η|X)
+

λ0(η,X)

fΨ0|X (η|X)

}
· dη · dFX ,

where λ1(η,X) = E[Y 2RD
(

Z1

π(X)2 + 1−Z1

(1−π(X))2

)
|Ψ1 = η,X] and λ0(η,X) = E[Y 2R(1−D)

(
Z1

π(X)2 + 1−Z1

(1−π(X))2

)
|Ψ0 =

η,X].
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